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Abstract 

An analytical approximation of the correlation func- 
tion relevant to a collection of spherical particles is 
obtained starting from a peaked particle distribution 
and neglecting any interparticle correlation. The dis- 
tribution depends on two parameters, A and Do, 
respectively the total width of the peak and the posi- 
tion of its left end. The distribution is such that by 
an appropriate variable rescaling and a suitable 
choice of the parameter A/Do, a very accurate ana- 
lytical approximation is obtained for the correlation 
function relevant to the particle distribution predicted 
by Lifshitz & Slyozov [J. Phys. Chem. Solids (1961), 
19, 35-50] and by Wagner [Z. Elektrochem. (1961), 
65, 581-590] for advanced stages of phase-separation 
processes in supersaturated solid solutions. By a 
Fourier transformation, two simple analytical 
expressions are obtained for the corresponding SAXS 
and WAXS peak profiles. The characteristic feature 
of these is the presence, in the experimentally access- 
ible region, of some oscillations in the SAXS Porod 
plot and in the latter generalization appropriate to 
WAXS peaks. The observation of these features in 
peak profiles, relevant to samples where a demixing 
process may have occurred, and the subsequent use 
of the functional expressions presented here should 
make the numerical analysis of experimental data 
easier and yield a more definite answer on the nature 
of the demixing process. 

I. Introduction 

The shape of the peak profiles of the X-radiation 
diffracted by a crystalline powder sample is deter- 
mined by the size distribution of the constituent crys- 
tallites as well as by the disorder present in the latters' 
lattices. Nowadays, in fact, the corrections of the 
broadening effects due to the experimental apparatus 
can be carried out with suitable optimization pro- 
cedufes and an appropriate standard material. Com- 

* Present address (until October 1990): Laboratoire de Physique 
des Solides, BStiment 510, 91405 Orsay CEDEX, France. 

bined efforts of many researchers have led to the 
development of software which, even with a personal 
computer, yields high-precision results.t By contrast, 
the separation of the contribution due to size effects 
from that due to lattice disorder is even less accurate 
even when a Fourier analysis is employed. To a large 
extent, in fact, the separation is a matter of assump- 
tions on the different kinds of lattice disorder which 
can be present. An indirect method of obtaining a 
deeper insight into this problem is to neglect disorder 
effects and to analyse how sensible choices of the 
particle distributions modify the shape of peak 
profiles. The subsequent comparison with experi- 
mental data should yield an estimate of the import- 
ance of neglected disorder effects. This paper, as for 
others appearing over the past few years [see for 
instance Rao & Houska (1986)], follows this 
approach. Our attention~ in fact will focus on the 
skewness (Granquist & Buhrman, 1975) of size distri- 
bution functions. We analyse in detail a distribution 
which approximates sensibly the ones that, according 
to the theory by Lifshitz & Slyozov (1961) and Wagner 
(1961) (abbreviated as LSW), result from the demix- 
ing processes taking place in supersaturated solid 
solutions. Glasses (Zarzycki, 1974) constitute a para- 
mount example. Of course it would be interesting to 
find a microcrystalline system showing a crystallite 
size distribution equal to the LSW one. It is probable 
it could be obtained by crystallizing, in a controlled 
way, demixed glasses where the precipitate coarsen- 
ing has undergone an Ostwald ripening process, since 
the latter for glass-in-glass phase separation yields 
LSW particle size distributions. 

The plan of the paper is the following. In the next 
section (II) we shall recall the main theoretical 
definitions and results. Particular attention will be 

t For a discussion of these topics we refer to Delhez, de Keijser 
& Mittemeijer (1982), de Keijser, Langford, Mittemeijer & Vogels 
(1983) and to Enzo, Fagherazzi, Benedetti & Polizzi (1988). See 
also the August 1989 issue of the Australian Journal of Physics. 

~: A brief summary (Fagherazzi, Ciccariello & Benedetti, 1988) 
of this paper was presented by one of us (GF) at the 1 lth European 
Crystallographic Meeting. 

0108-7673/90/030187-08503.00 O 1990 International Union of Crystallography 
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payed to those results which follow from the recently 
highlighted analogy (Ciccariello, 1990) that exists 
between the theoretical analysis of a single wide-angle 
X-ray scattering (WAXS) peak and that used in small- 
angle X-ray (SAXS) scattering. In the third section 
we introduce our approximation of the particle distri- 
bution, which, according to the LSW theory, ought 
to be realized in the last stages of demixing proces- 
ses inside glasses (Zarzycki, 1974). The analytical 
expression for the suggested approximation is such 
that one can obtain the analytical expressions both 
of the peak profile and of the sample correlation 
function. In the fourth section we approximate the 
latter expressions by Voigt functions in order to see 
if and where discrepancies arise. We find that these 
are particularly evident in the Porod plot of the 
intensity. A conclusive section summarizes the paper. 

II. General theory 

Let us briefly recall the main theoretical definitions 
as well as some general properties following from the 
invoked analogy with the SAXS theory. According 
to the standard notation of X-ray diffraction theory 
(Guinier, 1963), let Sot = S o u t - S i n  = ha*+ kb*+ Ic* 
denote the Bragg reflexion relevant to the rth set of 
Miller indices hkL The corresponding peak profile is 
given by 

L(h)=~ I[(ho,+h)~or+h~]d2h~ 

= ~ exp(-iht)yr(t)dt,  (1) 
--OO 

where gOt is the unit vector associated with So, and 
ho,=27rSo,, yr(t) is proportional to the probability 
density that if a stick of length t and direction ,So, is 
tossed randomly its ends fall inside the filled region 
of the sample. For this reason, it will also be referred 
to as the oriented stick probability function (oSPF) 
(Ciccariello, 1985). If one denotes by pv(r) the func- 
tion characteristic of the filled region of the sample, 
then 

3/,(t) = V -I ~3 pv(rl)pv(r~ + tSOr) dr1. (2) 

Denoting by V~ the region occupied by the ith crystal- 
lite, one has 

pv(r)=Y, pv,(r) (3) 
i 

and (2) becomes 

3/,(t) =Y. ( Vi/ V) ~ pv,(r,)pv,(r~ + t~o,) dv,/ V~ 
i R3 

+ Z ( I /V)  2 pv,(r~)pvj(r1+t~o,)dv,. (4) 
i # j  3 

The second sum on the r.h.s, of (4) is usually neglected 
on the basis that it should be small and structureless 
when particles are randomly distributed. For polydis- 

perse systems of single-shape particles, the first sum 
can be converted into the integral 

7 r ( t ) = I d / 2 ~  V(D)Tr(D,/2)3/r(t,D,/2)dD/V. (5) 
0 

Here V(D) is the volume of the particle having size 
D, rr(D,/2)  is the number density of particles having 
a particular orientation (=/2)* with respect to ~,o, and 
size D. Finally, %(t, D, /2)  is the oSPFof the  specified 
particle and it is obtained from (2), provided we 
interpret pv here as the function characteristic of the 
spatial set occupied by the particle and V as the 
volume of the latter. Equation (2) implies that 
3/,(0, D, O) = 1 and 3/r(0) = 1 and thus the particle 
distribution function has to obey the normalization 
condition 

V-l~d/2 ~ V(D)Tr(D,/2)dD=I. (6a) 
0 

Consequently, 

II(D, /2)= V-' V(D)Tr(D, /2) (6b) 

FI(D)-  V- 'V(D)~ rr(D,/2)d/2 (6c) 

are true probability densities. 
From (1) and a well known property of the Fourier 

transform, the behaviour of the peak profile l ( h ) t  at 
small (large) h's reflects the behaviour of 3/(t) at large 
(small) t's. If one assumes that FI(D,/2) decreases 
sufficiently fast at large D's  and that it is a C 2 function 
in [0, oo), i.e. a continuous doubly differentiable func- 
tion, then many properties of 7(t, D, /2)  hold true 
also for 3/(t). For this reason let us briefly recall some 
general properties of 3/(t, D,/2) ,  which follow essen- 
tially from its geometrical meaning. One knows that: 

(i) 7(t, D, 12) is a non-negative even function with 
respect to t and has a t support not exceeding 2D; 

(ii) its first t derivative evaluated at the origin, i.e. 
3/'r(0, D,/2) ,  is proportional to the area [ = S , ( D ) ]  of 
the projection of the particle surface on a plane 
orthogonal to So, .  More definitely, one has 
y'(0, D, /2)  = - S r ( D ) / V  (Ciccariello, 1990); 

(iii) for convex particles, 3/7(t, D, 12) is a non- 
negative quantity since, after multiplication by t, it 
represents the volume fraction of the particle relevant 
to a diameter length lying between t and t + d t and 
parallel to ~0r (Guinier, 1963). One can also say that 
tyT(t, D, 12) is the probability density that a stick of 
length t, parallel to So,, has both its ends on the particle 
boundary; 

(iv) 3/7(0, D,/2) ,  being related to the existence of 
edges and of contact points, represents the angularity 
of the particle and one can show that the latter is a 
non-negative quantity; 

*/2 represents the set of variables required for specifying the 
orientation of a particle, for instance the set of Euler angles. 

t From now on we shall omit the index r when it is not necessary. 
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(v) 3,'r(t, D, 12) has finite discontinuities for those 
t values such that a translation of the particle by t~0~ 
yields a tangency of the two boundaries on a finite 
area set; 

(vi) similarly, finite discontinuities arise in 
y"(t, D, O) for those t values such that the translation 
of the particle by t~o, leads either to a tangency of a 
finite-length subset of the edges with the original 
particle surface or to a tangency condition at a regular 
point of the boundary with the tangent plane 
orthogonal to 's0~. 

When the assumption previously made for 
H(D, ~) is fulfilled, properties (i)-(iv) also hold true 
for 3,(t). In particular, 3,'(0) and 3,"(0) will represent 
the average of the crystallite projected surface areas 
and angularities, respectively. On the contrary, 
properties (v)-(vi) are washed out by the average (5), 
but for the case of a g-like distribution of particles. 
All these properties can be observed stemming 
directly from the measured peak profile l(h), at least 
in principle. In fact, from (1) and (5), it follows 
immediately that 

oo  

I (h)  = Idg2  I H(D, g2)I(h,D, F2)dD (7) 
o 

so that I(h) is the average of the crystallite peak 
profiles defined by 

oo 

I(h,D, F2)= I exp(-iht)3,r(t,D, g2)dt 
- - 0 0  

=2~cos(ht)Yr(t,D, g2) dt. (8) 
0 

Property (ii) implies that, at very large h's, I(h)~- 
25¢h-2, where 5 ¢ = S/V  and S is the average of quan- 
tities S(D), i.e. the area of the crystallite surface 
projected along the direction Sot. Conditions (i), (ii) 
and (iii) ensure that one can directly obtain the second 
derivative of the correlation function from the relation 

radius [=r~(t)]  (varying with the duration t of the 
demixing process), such that separated grains tend 
to disappear or to grow depending on whether their 
diameter D is smaller or greater than 2rc(t). In this 
way it turns out that the final probability density of 
the grains in terms of their size is different from zero 
only in the interval [ 0 <  y = D/2r~ < 3/2], where its 
analytical expression is [Lifshitz & Slyozov (1961), 
see also Martin & Doherty (1976), § 4.5] 

/-/LSw(Y) = ~y2(y + 3)-7/3(3/2-- y)-,,/3 

X exp [--(1 --2y/3)-~]. (10) 

Here y = D~ Dc, with Dc = 2re(t) and ~ is a normaliz- 
ation constant. We recall now that in the case of 
glasses we have strong experimental evidence that the 
separated particles have a spherical shape [Zarzycki 
(1974), see also Benedetti, Ciccariello & Fagherazzi 
(1988)]. The oSPF of a sphere, having diameter D, 
is given by 

3,sph(t,D)=l-3ltl/2O+ltl3/2O 3 Itl~O (11) 

and it is zero elsewhere. Then we can use (5) for 
evaluating the oSPF of a set of spheres obeying the 
LSW distribution given by (10). Firstly, instead of 
evaluating 3,(t) we find it more convenient to calculate 
its second-order derivative. On evaluation of the 
second-order derivative of (11), only the last term 
survives. This is proportional to I tlD -3 and thus it 
cancels the corresponding V(D) factor present in the 
integrand of (5). In this way one finds that* 

oo  

3,[.sw(t) = ~t ~ IILsw(y) dy. (12) 
t 

From this equation one immediately gets 

d Y~sw(t) 
dt t 

- -  - - (¢/-/LSW(t)- (13) 

y"(t)=(1/¢c) ~[2~-h2l(h)]cos(ht)dh.  (9) 
o 

One should note that this relation, evaluated at t = 0, 
represents the WAXS modification of the Porod sum 
rule (Porod, 1965) yielding the angularity of a sample. 

III. Approximation of the LSW peak profiles 

Lifshitz & Slyozov (1961) and Wagner (1961) have 
performed an interesting theoretical analysis of 
demixing processes in supersaturated solutions, 
showing the universal behaviour of the leading 
approximation of the particle distribution function. 
In particular, they showed the existence of a critical 

The functional dependence of (10) does not allow 
the integration of (12) in a closed analytical form. 
Thus the exactt peak profile of the LSW particle 
distribution can be obtained only in a numerical way. 
Since our main task is that of finding a recipe for 
isolating the main features of this kind of distribution 
we find it more convenient to approximate the LSW 
distribution by a function which has an analytical 
expression simple enough to carry through all 

* Note that ~¢ represents the normalization constant appropriate 
to the particular equation where it appears. Therefore, although 
the symbol is the same, its explicit expression will generally depend 
on the considered equation. Moreover, in order to make the nota- 
tion simpler, we shall confine ourselves to the region t-> 0, since 
the oSPF's are even t functions. 

t Modulo, of  course, unavoidable numerical inaccuracies. 
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subsequent numerical calculations in an analytical 
way. For this reason we have chosen the following 
functional expressions 

I 0 ( 2 )  [ ~ . - - i f j  - < l ° r l + 8 < - ~ "  
H,(~', 8 ) =  sin2 zr( 1) 

if l < - ~ ' < - l + &  (14) 

One sees that / - / .  (~', 8) depends on two dimensionless 
variables: ¢=--D/Do and 6=--A/Do, where Do is a 
particular length. Also, H,(~', 8) corresponds to a 
peak set at ~" = 1 + 6/2,  with a width proportional to 
6. The shape of the LSW distribution function, shown 
in Fig. 1, is similar to that of/- / . (¢,  8). We stress that 
the main reasons for choosing the functional 
expression (14) have been its fair accuracy in 
approximating the  HLSW distribution, its analytical 
simplicity and the fact that H.(~', 6) is a C 2 function 
throughout the closed half-line [0 <_ ~" <_ o~]. This 
property is padticularly important in order to preserve 
the first leading terms of the asymptotic expan- 
sion of the Fourier transform ~f y" (Ciccariello, 

' I  u I . I ' I , I ~ I . I , 1 1 1 i I . I . I . I I I ~ "T - "  

. -  . . . . . . . .  _ / % ' ,  • 
o 

",, ', / / \ ; 

#. 

°o.o 0.2 o.,; o.6 o.e 1.o 1.2 1.~ t.6 ° 

y - D/De 

Fig. 1. The peaked broken line represents the LSW distribution, 
defined by (10). It refers to the left scale and the units are such 
that c¢ = 1. The longer-dash curve, with a plateau on the left, 
represents Y~w(Y)/Y obtained by the numerical evaluation of 
the integral on the r.h.s, of (12). The relevant scale is the right 
one. The short-dash curve represents the best Lz approximation 
of Y~sw(Y)/Y, obtained by a proper choice of the parameter 6, 
present in the function y~[~(y), 6]/~'(y) defined by (15) and by 
the rescaling ~'(y)= (1 + 8)y/1.5. In this way, we have obtained 
6 = 1-47. The corresponding H.[~(y), 6] distribution, represent- 
ing the best approximation of the LSW one, is represented by 
the continuous curve. In passing we note that changes of param- 
eter 6 by less than 20% do not appreciably modify the overall 
picture. 

Goodisman & Brumberger, 1988). Substituting (14) 
in (12), one gets 

y ,(~ ' ,6)  " = ~: 1 (ff-1)~_8 1 sin 2 r ( - 1 )  

if 1_<~'_< 1 + 3  

if 1 + 8 <- ~. (15) 

The best agreement which can be realized between 
y~(s r, 8 ) / s  r and Y[sw(Y)/Y is shown in Fig. 1. It has 
been obtained by choosing for 6 the value 6LSW such 
that 

1-5 

j" ]y,[~r(y), 6]/~(y)-Y[sw(y)/yl 2 dy, 
0 

where ~(y) = (1 + 8)y/1.5, turn out as small as poss- 
ible. One should note that the peak of the particle 
distribution at y-~ 1 does reflect now into a plateau 
in an interval next to the origin• Two further integra- 
tions yield the correlation function 

'1 - ~ { [ ½ +  8 ( 8  + 3 ) / 6 -  a - 2 ] ~  " -  ~ '3 /6}  

0<-~---1 
~ [ { ( 8 4 _  ~.4)/126 - [  8+~(62+ - ~2)]/66 

-[88+(8+-~)]/47r 2} 
~,,(¢, 8) = 

- 1/27r(~: sin [ a (~ : -  1) ] /a  2 

- 2{ 1 - c o s  [ a ( ~ -  1)]}/a3)] 

l_<~r_<l+8 

0 1 +8_< ~', (16) 

where the following definitions have to be used 

8+--=1+8 a=27r/8 (17a, b) 

and the normalization constant c¢, determined by the 
condition y . (0  ÷, 8) = 1, is 

c¢=[~+8(82+48+6)/12-82(2+8)/47P] -1. (17c) 

One should note that the average specific surface is 
given by 

oq~ , + = - y , ( 0 , 8 )  

= c¢[½+ 6(6 + 3 ) / 6 -  62/4zr2], (18) 

whi'.e the angularity "'"+ y , t u  , 6) is null, since we are 
dealing with spherical particles. From (7), (8) and 
(16) it is rather straightforward to evaluate the 
intensity scattered by an assembly of spheres obeying 
the distribution (16). One findst 

2,9° I 1 a2(8+ COS h + - c o s  h) 
I , (h ,  6) =-~-~ + 2 ~ ~ h4 8h4(h2_a2) 

2a2(2h 2 -  a2)(sin h ÷ - s i n  h ) ]  
+ 6hS(h2_a2) 2 ~ (19) 

t We note that throughout (19), (20) and (21), the h unit is Do 1. 
Moreover, our unit length has been set equal to D O . 
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where h+ = hS+ and 5e, 8+, a and <¢ have been defined 
in (18), (17a-c), respectively. We note also that the 
peak intensity at the origin is 

i,(0,8)=~85+ -1 8(83-1)+ 384 "[ 

408 8"rr 2 l'i-~4j. (20) L 
Before concluding this section, we report the 
expression of the SAXS intensity, scattered by a col- 
lection of spherical particles obeying the distribution 
/7. (~', 8). Clearly, the correlation function is still given 
by (16), thus by Fourier transforming it is easy to 
evaluate the SAXS intensity i.(h, 8). Actually this 
quantity turns out to be simply related to the WAXS 
peak profile, already evaluated. Starting in fact from 
the definition 

o o  

i.(h, 8) = (47r/h) j" ~'7.(~', 8)sin (h~') d~', 
0 

one immediately gets 
o o  

i,(h, 8 )=  47r d f h dh y,(~', 8) cos (h~') ds r 
0 

2~ d 
- h dh  I , ( h ,  8).  (21) 

To good accuracy, (19) also represents the peak 
profile of a LSW distribution of spherical particles. 

IV. Numerical analysis 

In Fig. 1 we have reported both the HLsw distribution 
and one of its bes t /7 ,  approximations. They are the 
peaked curves on the right. The two curves with a 
plateau on the left represent their integrals from the 
extreme right up to y. They are the functions 
Y[sw(Y)/Y and y~(~', 8)/~', with ~'= (1+8)y/1.5 and 
8 = 1.47. The latter value resulted from requiring that 
the L2 norm of the function y'~sw(y)/y- y~(~', 8)/~" 
turns out as small as possible. Two subsequent 
numerical integrations of Y[sw(Y) yield the numerical 
expression of TLSW(Y), represented by the continuous 
line in Fig. 2. The best fit, always in the L 2 sense, of 
this function by the y.(~', 8) expression, given by (16), 
yielded for 8 the value 1.71( - 8LSW).t The lower part 
of Fig 2 shows that the maximum difference between 
YLsw~Y) and y.(~', 8LSW) is 2 X 10 -4. This fact and the 
properties 

(a) y,(~', 8) and YLsw(Y) have the same y support 
(b) the derivatives y~.")(~',8)'s are continuous 

throughout the positive ~" axis up to n = 4 

f The difference of this value from the former one is simply a 
consequence of the fact that the region where the relevant minima 
occur is rather flat, so that any choice of 8 in the range 1.2, 1.9 
does not appreciably modify the overall picture. 

(c) 7~(0, 8LSW)--Y~SW(0)= 10-4t 
(d) ~,~(0, 8,sw)= Y~sw(0)=0 

allow us to conclude that the peak profile resulting 
from (19), with 8 = 8LSW, can be confidently identified 
with the LSW exact one. The profile is represented 
by the continuous curve in Fig. 3. It is now natural 
to look for the most typical feature of this profile. To 
this aim we have analysed it by standard WAXS 
techniques. In fact we have best-fitted the LSW corre- 
lation function [7LSw(Y)] by a function defined as 

%t(Y; a, fl)=exp(-alYl-fl2y2), (22) 

where c~ and/3 are adjustable parameters. We remark 
that (22) is the Fourier transform of the so-called 
Voigt function which is commonly believed to be one 
of the most reliable functional parametrizations in 
order to best fit intensity peak profiles (Delhez, de 
Keijser & Mittemeijer, 1982; Benedetti, Fagherazzi, 
Enzo & Battagliarin, 1988). We have considered two 
cases: 

f In the numerical evaluation of  the integral expression of 
YLSw(Y), we have used a A y  step increment equal to 10 -4. Con- 
sequently, we can ignore the former difference. 

- w . , . i .  1 . 1 . , . , . ! .  w . l . l . , . , ,  i . , .  | .  w . , .  I . 

o 

o d 

4.10 .3 ; - - , . .  . . . . . . . . . .  : :  : ' , : ' ,  : ' :  : : ' ,  : . . . . . .  ~ . . . . . . . . . . . . . . . . . .  , 4 . 1 0  - 4  

o.o 

" 4 "  10"3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4"  10"-" 
0.0 0.5 1.0 1.5 2.0 

y - D/Dc 

Fig. 2, In the upper part of  the figure, the continuous curve shows 
the correlation function YLsw(Y) obtained by three subsequent 
numerical integrations of  (10). The dash-dot curve represents 

n i.e. the best YLSW approximation obtained by using a Voigt 1/ g t ,  

function [%,(y; a,/3)] and requiring that the corresponding a 
and/3 values are the ones yielding the specific surface and the 
angularity appropriate to the LSW distribution. The broken line 

the best L 2 approximation of YLSW obtained with represents 1) gt, 

a Voigt function. The best L 2 approximation with a 7,(Y, 8) 
function is also shown. In order to appreciate the differences, 
in the lower part of  the figure we plot the corresponding 
difference functions YLsw(Y) l -- Vgt(y; a,/3) and YLsw(Y)-- 
y , (y ,  8). They are the short-dash and long-dash-short-dash 
lines, respectively, while the appropriate vertical scales are 10 -3 
and 10 -4 . 
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(I) parameters  a a n d / 3  have been determined by 
minimizing the L 2 n o r m  of  (YLSW--Vg,). From this 
ce (I)= 1"11 a n d / 3 ( i ) =  1.42. The corresponding Voigt 
approx imat ion  will be denoted as V(gI,); 

(II)  we have required that  the values at the origin 
of  the first two derivatives of  the required Voigt 
approx imat ion  are equal to those of  YLSW, namely  

7~t(0) = - a  = Y L s w ( 0 ) = - 1 . 3 9  (23a)  

7 g t ( O )  = a 2 _ 2 / 3  2 ,, = 7LSW(0) = O. (23b) 

The resulting approx imat ion  will be denoted by 

Fig. 2 shows that  the agreement  achieved in the 
first case is better than  in the second one. This con- 
clusion, however,  is ra ther  rash, since we have to look 
also at the corresponding peak profiles. To this aim 
we have to Fourier  t ransform (22). According to the 
general  analysis of  van de Hulst  & Reesinck (1947), 
the FT can be fairly approx imated  by 

77/(1 + h2//32)+ ( 1 - n )  exp ( - l n  2h2/fi2). 

The first and  second contr ibutions are usually referred 
to as Lorentzian and Gauss ian ,  while the paramete r  
% -= 1 - r / i s  called the Gauss ian  content of  the Voigt 
funct ion (22). Kie lkopf  (1973) has clearly expounded  
how to calculate/3 and 77 starting from the parameters  
a and /3  present  in (22). The resulting peak  profiles 
i(1)(q) and I(n)(q) (q =-hDc), relevant to the above 
two cases, are represented respectively by the short- 
dash  ,and long-dash curves of  Fig. 3. One sees that  at 

i , I , i = i , 1 i i = i , i , I , i , i . i | i i i , 

i 8. 

- \ \  \ \  
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Fig. 3. The continuous line represents the intensity peak profile 
relevant to the best 3', approximation of 3'LSW" The two broken 
lines, respectively with the short and long dashes, are the two 

I and u defined in§IV, best Voigt-function approximations: vg, vg,, 
of the LSW peak profile. The curves on the right refer to the 
fight scale and allow one to appreciate the small differences 
present in the tail region. 

very large q's the profile lm)(q) is much closer to the 
real one than I([)(q). This result is an obvious con- 
sequence of  (23a) ,  which guarantees  that the leading 
asymptot ic  term of I(]~)(q) is equal to that  of  ILSW(q). 
By contrast,  neither this condit ion nor the one rel- 
evant to a null angulari ty,  i.e. (23b), are fulfilled in 
case I. These two aspects are evident from Fig. 4: (a )  

2 ( I )  at large q's the plateau of  the curve q I (q) (short- 
dash line) lies definitely below that of  the cont inuous 
curve and (b) the curve q2l(~)(q) lies mostly above 
its horizontal  asymptot ic  line [so as to have a (mean- 
ingless) positive angulari ty] .  In conclusion, after hav- 
ing taken into accout also the fact that,  for normaliz-  
ation reasons, q2I(n)(q) must be suitably scaled so 
that it super imposes  on the continuous line at very 
large q's, one sees that  the profile l(~)(q) is more 
accurate  than l(n)(q) only in the region q < 5, while 
at larger q's the opposite becomes true. As a mat ter  
of  fact, it is advisable that  the analysis does not 
depend too much upon the asymptot ic  behaviour .  
Luckily, Fig. 4 offers a feature that can be considered 
typical of  the LSW peak and it is present in a region 
which is not yet too much asymptotic.  We are referring 

l , - . . . . . . . . . . . . . . .  

e~ 

o 

° 0 . 0  5 .  1 0 .  1 5 .  2 0 .  2 5 .  3 0 .  

q= hD c 

Fig. 4. The curves represent the Porod plots relevant to the WAXS 
profiles discussed in Fig. 3. The existence of a plateau is evident 
for the three curves. However, one should note that l.(h, 8LSW) 
and hence also the LSW profile show, next to the main peak, a 
further appreciable oscillation, which is not present in the Voigt 
profiles. Therefore, a good resolution of experimental peaks in 
this region would easily allow one safely to estimate the necessity 
of using the 3'. distribution. Finally, we note that the, different 
height of the vl~ plateau, with respect to that of the 3', curve, 
is simply a consequence of the fact that we are using the 
intensities normalized as in Fig. 3. A quantitative Porod plot, in 
fact, requires that the intensity be normalized so as to have 

co ~o I(h)dh = It, as follows from (8) and from the condition 
7r(0) = 1. On the contrary, from this figure it is evident that the 
Porod invariant, i.e. the value of the former integral for the vg, 
approximation is higher than the LSW one. 
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to the presence of a second observable peak in the 
region q - 1 0 .  Therefore, the observation of such a 
feature in the Porod plot of a WAXS peak profile 
can be a good reason for using (19) in fitting the 
profile. 

We note also that the use of this function has also 
some important implications concerning the so-called 
volume-fraction weighted distribution (v.f.w.d.), 
defined as Hv(y) = ~yy"(y) (Guinier, 1963). The con- 
tinuous line of Fig. 5 represents the v.f.w.d.//v, Lsw(Y) 

while the close short-long-dash curve represents 
H~.,(~', ~LSW). The remaining two curves are relevant 
to the Voigt approximations considered. (The one 
with shorter dashes refers to v~gx/k) The limitations 
are evident: neither V(gt~ ) nor V(g'/) are able to reproduce 
the sharp decrease of the real distribution. In fact, 
when they are forced to do that as in the v(g~, ) case, 
one finds a negative population for particles with 
smaller diameters. Fig. 6 shows the SAXS intensities 
relevant to t h e / 7 ,  distributions characterized by the 
following 6 values: &sw (continuous line) and 0.1 
(broken line). The comparison with Fig. 4 shows that 
in the LSW case the oscillations in the SAXS profile 
are wider than in the WAXS one. In both cases, 

~ , . ,  , , , , . , . ,  , , , ,  , , , . , ,  , , . ,  ~ 

however, their amplitude decreases fast with q. By 
contrast, in the case 6 =0.1, the oscillations still 
remain rather wide, although the washing effect due 
to the small polydispersity can be seen from the fact 
that the intensity no longer becomes zero at the rela- 
tive minima.¢ 

V. Concluding remarks 

The peak profile for a distribution of spherical par- 
ticles obeying the distribution law given by (14) has 
been explicitly evaluated under the assumption that 
the interparticle interference can be neglected. The 
former distribution, depending on two parameters Do 
and 6, is such that by fixing the latter's value at 1.71, 
one gets a very accurate approximation of the LSW 
particle distribution and consequently of its peak 
profile. The characteristic feature of this intensity is 
the presence of two peaks in its WAXS Porod plot, 

i" At small q's, in fact, the distribution can be looked upon as a 
monodisperse one, while the expected absence of the oscillatory 
terms decreasing as h -4 will become really effective only when q 
is sufficiently large for the related quantity q6 to satisfy the condi- 
tion q8 > 27r, according to the empirical criterion for the onset of  
the relevant asymptotic behaviour. 

f / ,,: 
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A , #  -... 
,d ),'-.----... 
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Fig. 5. The volume-weighted distributions of the particles for the 
ideal LSW case (continuous curve), for the y .  approximation 

i for the vlg[ t (- - -) cases are ( . . . .  ), for the Z,g, ( - - - - - - )  and 
represented. One should note the rather abrupt way the LSW 
volume distribution goes to zero as y ~ 1.5. By contrast, distribu- 
tions usually obtained by Lorentzian approximations show a 
much longer tail, revealing opposite skewness in the distribution 
(Granquist & Buhrman, 1975; Fagherazzi et al., 1988). This effect 

have been determined survives also in the figure, although the ~'gt 
by a best-fit procedure. This fact shows that Voigt functions are 
unable to describe these skewed distributions. Forcing the choice 
in order to get a better agreement, one ends up with a unphysical 

' function is solution. In fact, the distribution relevant to the Vg t 
negative at small y's. 

• I . . . .  ' . . . .  ! . . . .  ' . . . .  
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Fig. 6. The continuous curve represents the Porod plot of  the 
SAXS intensity scattered by the /7.  distribution of spherical 
particles, characterized by the LSW value 8 = 1-71. Thus it rep- 
resents also to a fairly good approximation the SAXS intensity 
of a LSW distribution of spherical particles. Since the value of 
the parameter 8 is rather large, one sees that the oscillations are 
considerably washed out, although they are larger than around 
WAXS peaks. (See Fig. 4.) By contrast, the broken line represents 
the intensity scattered by the more peaked /-/. distribution, 
characterized by the value 8 = 0.1. The resulting Porod plot is 
quite similar to that of  a spherical particle with radius r c. 
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located in the region 3 < q < 10. Therefore, the pres- 
ence of this feature in observed peak profiles, resulting 
from samples where a demixing process has probably 
occurred, will make the use of the aforesaid analytical 
expression quite advantageous. From a numerical 
point of view, in fact, the use of (19) is only slightly 
more complicated than that of pseudo-Voigt func- 
tions. Besides, with 8 = 8LSW, it involves only one 
parameter, Do or equivalently De. This result is inter- 
esting for three reasons: (a) it makes it possible to 
test whether the conditions underlying the LSW 
theory are met or not, directly using WAXS results; 
(b) one could use SAXS experimental results for 
testing the applicability of the LSW model. In the 
affirmative case, one knows the ideal WAXS profiles. 
Thus any deviation ought to be ascribed to disorder 
effects; (c) with 8 as a free parameter, one has another 
simple expression for fitting peak profiles. If it turns 
out that the overall agreement is better than that 
obtained by using Voigt functions, one would find a 
v.f.w.d, skewed in a direction opposite to the ones so 
far observed. 
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Abstract 

A method is described for the least-squares refinement 
of the atomic parameters of the ordered part of a 
crystal structure in the presence of disordered solvent 
areas. Potential solvent regions are identified 
automatically. The contribution of the observed con- 
tents to the total structure factor is calculated via a 
discrete Fourier transformation, and incorporated in 
a further least-squares refinement of the ordered part 
of the structure. The procedure is iterated a few times 
to convergence. It is found that this mixed discrete- 
atom and continuous solvent-area model refinement 
approach greatly improves the quality of discrete 
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0108-7673/90/030194-08503.00 

atomic parameters, i.e. the geometry and the e.s.d.'s. 
An electron count over the solvent region in the final 
difference electron-density map provides a con- 
venient estimate for the number of solvent molecules 
present in the unit cell. The application of the method 
to four structures is described. 

Introduction 

The completion of an otherwise successful structure 
determination is frequently hampered by the presence 
of statically or dynamically disordered solvent of 
crystallization filling voids in the structure (e.g. 
Raston & White, 1976; Read & James, 1980). The 
problem of disordered solvent areas is very common 
in protein crystallography. Several methods are used 

O 1990 International Union of Crystallography 


